La Agencia Internacional de la Energía define la energía solar como aquella que se puede extraer de la luz solar que llega a la tierra y ser transformada en otras formas de energía útil, como energía térmica o eléctrica.

La luz solar puede ser convertida de manera directa en energía eléctrica, a través de celdas fotovoltaicas o bien en energía calórica a través de equipamiento de concentración solar.

En los sistemas de aprovechamiento térmico, el calor recogido en los colectores solares o concentradores puede destinarse a satisfacer numerosas necesidades como, por ejemplo, obtención de agua caliente para consumo doméstico o industrial, o bien para fines de calefacción, aplicaciones agrícolas, y la producción de electricidad a través de un proceso termoeléctrico.

Por su parte, los Paneles Fotovoltaicos, que constan de un conjunto de celdas solares, se utilizan para la producción de electricidad y constituyen una adecuada solución para el abastecimiento eléctrico tanto en áreas rurales como desérticas, que cuentan con un recurso solar abundante. La electricidad obtenida mediante los sistemas fotovoltaicos puede utilizarse en forma directa, o bien ser almacenada en baterías para utilizarla durante la noche.

Fuente: Internacional Energy Agency

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA ENERGÍA SOLAR

La energía eólica es aquella energía cinética que se encuentra disponible en una masa de aire en movimiento (viento). Según la Administración de Información de la Energía de los EE.UU. esta energía ha sido utilizada por el ser humano desde, al menos, el año 5.000 A.C.

Los aerogeneradores son dispositivos diseñados para transformar la energía cinética del viento en energía eléctrica. Producto de intensas actividades de investigación y desarrollo, su diseño aerodinámico ha tenido importantes variaciones desde sus orígenes a la fecha. En la actualidad, el diseño más común consiste en una turbina de tres palas) montadas sobre una torre. La turbina está acoplada mecánicamente a un generador eléctrico. La cantidad de energía que un aerogenerador puede transformar en electricidad dependerá, además de la velocidad del viento, de la altura de la torre y del largo de sus palas.

Fuente: EIA – U.S. Energy Information Administration

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA ENERGÍA EÓLICA

La bioenergía se define como la energía contenida en la biomasa. La biomasa corresponde a cualquier materia orgánica que esté disponible de manera renovable, tales como residuos de animales, plantas, cultivos o deshechos orgánicos.

Dependiendo de la biomasa que se utilice, la bioenergía puede ser utilizada como energía térmica, a partir de la quema directa, o bien a partir de un proceso de transformación en un combustible gaseoso (biogás) o en un combustible líquido (biocombustible).

Fuente: Agencia Internacional de la Energía

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA BIOENERGÍA

La Asociación Europea de la Energía Oceánica plantea que hay, al menos, cuatro formas de extraer el contenido energético disponible en los mares: tecnología undimotriz, mareomotriz, de gradiente térmico y de gradiente de salinidad.

La tecnología undimotriz extrae energía del movimiento de las olas, de igual forma, la tecnología mareomotriz aprovecha las mareas o corrientes marinas. Por su parte, la tecnología de gradiente térmico aprovecha las diferencias de temperatura entre la superficie y las aguas profundas, y, por último, está la tecnología gradiente de salinidad.

Chile es un país que tiene más de 4.500km de costa y una tradición naval importante, por lo que se estima que la energía de los mares puede jugar un rol, tanto a nivel de provisión de energía a la red como en aplicaciones descentralizadas. Con el propósito de aprovechar estas ventajas, nuestro país ha estado preparando sus capacidades tecnológicas poniendo en marcha una serie de iniciativas público-privadas, que buscan entender mejor el tipo de recurso de recurso y su disponibilidad en el territorio, evaluar los impactos ambientales y sociales, así como también preparar el capital humano necesario para facilitar la implantación de esta tecnología cuando esta esté en condiciones de competir en el mercado.

Fuente: Ocean Energy Europe

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA ENERGÍA DE LOS MARES

La energía eléctrica producida a partir de la energía potencial contenida en un volumen de agua ubicado a una cierta altura se denomina energía hidroeléctrica. En Chile, se utilizan generalmente dos tipos de centrales, de embalse y de pasada.

Las centrales de embalse interrumpen el curso normal de un río con el propósito de controlar la acumulación o liberación del agua almacenada, lo que permite gestionar la cantidad de energía producida. Las centrales de pasada desvían momentáneamente una parte del caudal de un curso de agua, con el propósito de dejarla caer sobre una turbina que produce la electricidad. Una vez terminado el proceso, el agua es devuelta al cauce natural.

La energía hidroeléctrica es renovable y su disponibilidad depende principalmente de los ciclos hidrológicos. Es del caso señalar que la Ley General de Servicios Eléctricos, en su artículo 225, define que serán consideradas como Medios de Generación Renovables No Convencionales, aquellas centrales hidroeléctricas cuya potencia conectada sea inferior o igual a los 20 MW.

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA MINIHIDRO

La energía geotérmica de alta entalpía es aquella en forma de calor que está disponible bajo la superficie terrestre, a profundidades relativamente bajas, producto de la presencia de magma a alta temperatura.

Una forma de extraer esta energía es aprovechar yacimientos de agua o vapor subterráneo que estén cercanos a la fuente de calor.

El calor extraído en la superficie se utiliza para producir vapor a presión que alimenta a una turbina encargada de la producción de electricidad. Finalmente, en las centrales de ciclo cerrado, el agua es reinsertada al yacimiento con el propósito que absorba nuevamente la energía térmica disponible.

Por su parte, la energía geotérmica de baja entalpía aprovecha las propiedades de aislación térmica de la parte más superficial de la corteza terrestre. A unos pocos de metros bajo tierra, la temperatura se mantiene estable durante el año en algunas decenas de grados Celsius. Con el propósito de aprovechar este fenómeno, se instala un circuito de cañerías bajo tierra, y se hace circular lentamente un líquido caloportador que en la superficie está a temperatura ambiente. Independientemente de cuál sea la temperatura ambiente, el líquido, al circular por las cañerías, equilibra siempre su temperatura con de la tierra. Así, si la temperatura ambiente es menor a la del interior de la cañería, entonces el líquido absorbe temperatura, mientras que, si el ambiente tiene una temperatura superior, entonces baja su temperatura.

Existe una gran variedad de formas para aprovechar la geotermia de baja entalpía, tanto para calefacción, refrigeración y agua caliente sanitaria. Una forma que ha probado ser eficiente es el uso de bombas de calor.

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA ENERGÍA GEOTÉRMICA

Los sistemas de almacenamiento de energía no producen energía por sí mismos, sino que permiten absorber energía desde una fuente en un momento determinado, y entregarla en otro momento para su consumo.

Según lo indica el Centro de Sistemas Sustentables, de la Universidad de Michigan, las tecnologías de almacenamiento están siendo desarrolladas, al menos, desde la primera mitad del siglo XIX. No hay una única forma de clasificar los sistemas de almacenamiento, sin embargo, lo más común es hacerlo a partir de la forma de energía que es almacenada. Así, es posible distinguir los sistemas de almacenamiento eléctricos, químicos, electroquímicos, mecánicos, hidráulicos y térmicos.

A la fecha, los sistemas de almacenamiento de energía se han masificado en aplicaciones donde no se requieren altos volúmenes de energía. Sin embargo, la investigación y desarrollo en esta área tomó fuerza, primero con la crisis del petróleo en EE. UU. de los años 70s y, más recientemente, a partir del impulso dado por la industria de la movilidad eléctrica.

Desde la perspectiva de las aplicaciones en la red eléctrica, que requieren grandes volúmenes de energía, los sistemas de almacenamiento más comunes son los de bombeo. Estos emulan la operación de una central hidroeléctrica, ya que utilizan energía eléctrica para bombear grandes volúmenes de agua hacia un depósito ubicado a una cierta altura, almacenando la energía en forma de energía potencial. Para extraer la energía, se deja caer el agua sobre una turbina, la cual está acoplada a un generador eléctrico.

Con los últimos desarrollos tecnológicos, el almacenamiento electroquímico en formas de baterías ha ido aumentando la cantidad de energía almacenable, al mismo tiempo que ha reducido considerablemente sus costos de inversión.

El primer sistema de almacenamiento conectado a la red eléctrica instalado en Chile está en la Subestación Eléctrica Andes, y fue puesto en servicio en 2009.

Fuente: Center for Sustainable Systems (University of Michigan)

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE DEL ALMACENAMIENTO

Actualidad

Turbinas eólicas en alta mar: una apuesta que se acerca al continente

Brasil se convertirá en un participante activo en este tipo de producción de energía limpia gracias al financiamiento de la Oficina Global de Investigación Científica de la Armada de los Estados Unidos, para el diseño de turbinas flotantes. En Chile, a pesar de contar con más de cuatro mil kilómetros de costa, el alto costo de implementación de la tecnología ha frenado su desarrollo.

La energía eólica es uno de los tipos de recursos energéticos limpios más desarrollados en el mundo y con mayor potencial. En las últimas décadas, el enfoque se ha centrado principalmente en turbinas eólicas terrestres. China es el líder mundial en capacidad instalada de energía generada por el viento y cuenta con el parque eólico terrestre más grande del planeta en la provincia de Gansu.

Le sigue EE.UU que posee seis de los diez parques terrestres más extensos, incluyendo el Centro de Energía Eólica en California y luego se posiciona Alemania, que tiene la capacidad eólica instalada más alta de Europa.

Por su parte, Chile ha incentivado fuertemente el desarrollo de este tipo de energía. La meta del Gobierno es que al año 2030, el 60% de la matriz sea en base a energías renovables y al 2050 ya alcance el 70%. “El proceso de descarbonización, con el que nos hemos comprometido, nos ayudará a alcanzar este objetivo, ya que en el mediano plazo debiéramos tener una matriz más sustentable”, explica el Ministro de Energía, Juan Carlos Jobet.

Los 31 parques eólicos terrestres que hay en nuestro país alcanzan los 2.146 MW (Mega Watt) instalados y las tres regiones con mayor potencia son Antofagasta, Atacama y Tarapacá. Además la energía eólica representó el 6% de la matriz energética de Chile en 2019.

“Para desarrollar turbinas eólicas en el mar los países deben cumplir con una de dos condiciones: tener mares poco profundos, de no más de 15 metros, o construirse en bancos de arena como los que hay en Brasil. Y la otra, se da en países con mucha reducción de espacio, por lo que hay que hacer proyectos en la costa, porque no hay otra opción”, explica José Ignacio Escobar, presidente de la Asociación Chilena de Energías Renovables, ACERA.

No obstante, dice el ejecutivo, “la tecnología offshore es carísima, porque se deben hacer fundaciones en el océano. Para aplicarla en Chile tendrían que construirse fundaciones muy profundas debido a la abrupta pendiente de la costa chilena (…) este tipo de tecnología aún no ha podido llegar a costo”.

La apuesta brasileña

El despliegue de turbinas eólicas en el océano es de dos tipos: fijo (offshore wind) o flotante (floating offshore wind). Las turbinas fijas van con un pilote perforado en el fondo marino, y se instalan más cerca de la costa (a menor profundidad), mientras que las flotantes pueden desplegarse en mar abierto (y no obstaculizan el horizonte de visibilidad).

El 84% de las instalaciones de eólica marina se encuentran países europeos, liderados por Reino Unido, Alemania, Países Bajos, Dinamarca, Bélgica y Suecia. El 16% restante se encuentra principalmente en China, seguido de Vietnam, Japón, Corea del Sur, Estados Unidos y Taiwán.

En resumen, las turbinas flotantes en alta mar han estado lejos de ser protagonistas en Latinoamérica. Sin embargo, un grupo de investigadores en Brasil, gracias al financiamiento de la Oficina Global de Investigación Científica de la Armada de los Estados Unidos (ONR Global), están buscando formas de aumentar la capacidad de generación de energía eólica del país sudamericano.

Para ello están trabajando en nuevos diseños de turbinas eólicas flotantes en alta mar que podrían aplicarse a futuros proyectos que pudieran desarrollarse en la costa noreste de Brasil, con el objetivo de abastecer, como fuente de energía limpia, a la flota de la marina estadounidense.

Paul Sundaram, Director Científico de ONR Global en Sao Paulo, explica en un comunicado que “el objetivo es comprender cómo diseñar y administrar estructuras complejas en el dinamismo del océano. Esto es muy importante para la marina de los EE. UU., diseñar y construir sistemas resistentes en el océano”.

Por su parte, Alexandre Nicolaos Simos, líder del proyecto y profesor asociado del Departamento de Ingeniería Naval y Oceánica de la Escuela Politécnica de la Universidad de São Paulo, en conversación con Tiempo de Actuar, afirma que “creemos que esta es una alternativa prometedora para la energía eólica en Brasil en el futuro, y es importante que la academia comience a adquirir conocimientos sobre la tecnología mucho antes de que se convierta en realidad. Solo así puede contribuir eficazmente al diseño y la innovación cuando llegue el momento”.

Y agrega: “el desafío es la reducción de costos, ya que la instalación y mantenimiento de estos dispositivos en el mar es mucho más alta en comparación con las turbinas eólicas en tierra o cerca de la costa”.

En Brasil, la energía eólica está aumentando rápidamente y ya representa aproximadamente el 13% de la matriz energética, pero hasta el momento no se ha materializado ningún proyecto offshore y aún se están discutiendo las regulaciones para el mercado de energía eólica marina.

“Sin embargo, si los costos de las turbinas flotantes continúan disminuyendo, esta tecnología puede desempeñar un papel importante en el futuro. Brasil también tiene la ventaja de tener una gran infraestructura para las operaciones en alta mar, debido a la industria del petróleo y el gas, lo que ciertamente ayudaría a reducir los costos”, señala Alexandre Nicolaos Simos.

Futuro en Chile

La investigación en este campo a nivel global ha tenido desarrollos notables.

Por ejemplo, General Electric está desarrollando la turbina eólica flotante más grande del mundo, que entregaría 12 Mega Watt por unidad. Con una longitud de 107 metros, el aspa es más larga que un campo de fútbol y tiene aproximadamente 1,4 veces la longitud de un Boeing 747, uno de los aviones más grandes del mundo. Tres de las aspas forman el rotor Haliade-X, capaz de entregar electricidad a 16.000 hogares. Una vez terminado el prototipo, que se construirá en Rotterdam, Holanda, tendrá 260 metros de altura desde la base hasta las puntas y el rotor tendrá 220 metros de diámetro.

En Chile, por el contrario, la instalación de parques eólicos marinos no está en los planes del gremio. “Por ahora, este tipo de tecnología no se ve viable en un futuro cercano en Chile. Todos los parques eólicos proyectados serán en tierra. (…) Si pones a competir proyectos offshore sin ningún tipo de subsidio o apoyo con proyectos onshore (terrestres) o fotovoltaicos, es inviable”, señala el presidente de ACERA, José Ignacio Escobar.

En tanto, la coordinadora Técnica del Centro de Investigación e Innovación en Energía Marina (MERIC), Dernis Mediavilla, opina que la aplicación de la tecnología en el país requiere de mayores estudios.

“Hay varios puntos aún que investigar u mejorar con esta tecnología, como la corrosión marina, el biofouling, el anclaje y la respuesta de la estructura a las condiciones oceánicas (normales y extremas), la cadena logística, entre otros. Son temas en los que tenemos la expertise de trabajar activamente en soluciones tecnológicas, en conjunto con la industria”, dice.

Pero resalta: “aprovechando el impulso de esta incipiente industria billonaria, podemos desarrollar I+D (Innovación y Desarrollo) que a su vez puede transferirse de vuelta al despliegue de proyectos de energía undimotriz (generada a partir del oleaje) y de corrientes marinas, retroalimentando positivamente el ecosistema de tecnologías de extracción de energía en el mar”.

Asimismo, la experta visualiza una serie de aplicaciones que podrían tener potencial con la implementación de turbinas en alta mar para la generación de energía, como el abastecimiento de necesidades energéticas locales de islas o industrias, como la acuicultura offshore o la industria petrolera. E incluso, en un futuro, como punto de abastecimiento para buques de carga o transatlánticos que funcionen con electricidad.

Existen aerogeneradores con superficie flotante en el mar, no obstante actualmente sólo son un prototipo.

No obstante, el presidente de ACERA señala que mientras “exista superficie terrestre suficiente en Chile y no se logre encontrar una tecnología que sea lo suficientemente barata para parques offshore en superficies profundas, es difícil se desarrolle en nuestro país. Lo que sí se ha estado desarrollando en algunos países son fundaciones flotantes, es decir que el aerogenerador va flotando en la superficie del mar para no tener que enterrarlo. Pero por ahora está en fase de prototipo y no se sabe cuándo se podrá desplegar comercialmente”.

Fuente: Revista Electricidad

X