La Agencia Internacional de la Energía define la energía solar como aquella que se puede extraer de la luz solar que llega a la tierra y ser transformada en otras formas de energía útil, como energía térmica o eléctrica.

La luz solar puede ser convertida de manera directa en energía eléctrica, a través de celdas fotovoltaicas o bien en energía calórica a través de equipamiento de concentración solar.

En los sistemas de aprovechamiento térmico, el calor recogido en los colectores solares o concentradores puede destinarse a satisfacer numerosas necesidades como, por ejemplo, obtención de agua caliente para consumo doméstico o industrial, o bien para fines de calefacción, aplicaciones agrícolas, y la producción de electricidad a través de un proceso termoeléctrico.

Por su parte, los Paneles Fotovoltaicos, que constan de un conjunto de celdas solares, se utilizan para la producción de electricidad y constituyen una adecuada solución para el abastecimiento eléctrico tanto en áreas rurales como desérticas, que cuentan con un recurso solar abundante. La electricidad obtenida mediante los sistemas fotovoltaicos puede utilizarse en forma directa, o bien ser almacenada en baterías para utilizarla durante la noche.

Fuente: Internacional Energy Agency

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA ENERGÍA SOLAR

La energía eólica es aquella energía cinética que se encuentra disponible en una masa de aire en movimiento (viento). Según la Administración de Información de la Energía de los EE.UU. esta energía ha sido utilizada por el ser humano desde, al menos, el año 5.000 A.C.

Los aerogeneradores son dispositivos diseñados para transformar la energía cinética del viento en energía eléctrica. Producto de intensas actividades de investigación y desarrollo, su diseño aerodinámico ha tenido importantes variaciones desde sus orígenes a la fecha. En la actualidad, el diseño más común consiste en una turbina de tres palas) montadas sobre una torre. La turbina está acoplada mecánicamente a un generador eléctrico. La cantidad de energía que un aerogenerador puede transformar en electricidad dependerá, además de la velocidad del viento, de la altura de la torre y del largo de sus palas.

Fuente: EIA – U.S. Energy Information Administration

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA ENERGÍA EÓLICA

La bioenergía se define como la energía contenida en la biomasa. La biomasa corresponde a cualquier materia orgánica que esté disponible de manera renovable, tales como residuos de animales, plantas, cultivos o deshechos orgánicos.

Dependiendo de la biomasa que se utilice, la bioenergía puede ser utilizada como energía térmica, a partir de la quema directa, o bien a partir de un proceso de transformación en un combustible gaseoso (biogás) o en un combustible líquido (biocombustible).

Fuente: Agencia Internacional de la Energía

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA BIOENERGÍA

La Asociación Europea de la Energía Oceánica plantea que hay, al menos, cuatro formas de extraer el contenido energético disponible en los mares: tecnología undimotriz, mareomotriz, de gradiente térmico y de gradiente de salinidad.

La tecnología undimotriz extrae energía del movimiento de las olas, de igual forma, la tecnología mareomotriz aprovecha las mareas o corrientes marinas. Por su parte, la tecnología de gradiente térmico aprovecha las diferencias de temperatura entre la superficie y las aguas profundas, y, por último, está la tecnología gradiente de salinidad.

Chile es un país que tiene más de 4.500km de costa y una tradición naval importante, por lo que se estima que la energía de los mares puede jugar un rol, tanto a nivel de provisión de energía a la red como en aplicaciones descentralizadas. Con el propósito de aprovechar estas ventajas, nuestro país ha estado preparando sus capacidades tecnológicas poniendo en marcha una serie de iniciativas público-privadas, que buscan entender mejor el tipo de recurso de recurso y su disponibilidad en el territorio, evaluar los impactos ambientales y sociales, así como también preparar el capital humano necesario para facilitar la implantación de esta tecnología cuando esta esté en condiciones de competir en el mercado.

Fuente: Ocean Energy Europe

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA ENERGÍA DE LOS MARES

La energía eléctrica producida a partir de la energía potencial contenida en un volumen de agua ubicado a una cierta altura se denomina energía hidroeléctrica. En Chile, se utilizan generalmente dos tipos de centrales, de embalse y de pasada.

Las centrales de embalse interrumpen el curso normal de un río con el propósito de controlar la acumulación o liberación del agua almacenada, lo que permite gestionar la cantidad de energía producida. Las centrales de pasada desvían momentáneamente una parte del caudal de un curso de agua, con el propósito de dejarla caer sobre una turbina que produce la electricidad. Una vez terminado el proceso, el agua es devuelta al cauce natural.

La energía hidroeléctrica es renovable y su disponibilidad depende principalmente de los ciclos hidrológicos. Es del caso señalar que la Ley General de Servicios Eléctricos, en su artículo 225, define que serán consideradas como Medios de Generación Renovables No Convencionales, aquellas centrales hidroeléctricas cuya potencia conectada sea inferior o igual a los 20 MW.

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA MINIHIDRO

La energía geotérmica de alta entalpía es aquella en forma de calor que está disponible bajo la superficie terrestre, a profundidades relativamente bajas, producto de la presencia de magma a alta temperatura.

Una forma de extraer esta energía es aprovechar yacimientos de agua o vapor subterráneo que estén cercanos a la fuente de calor.

El calor extraído en la superficie se utiliza para producir vapor a presión que alimenta a una turbina encargada de la producción de electricidad. Finalmente, en las centrales de ciclo cerrado, el agua es reinsertada al yacimiento con el propósito que absorba nuevamente la energía térmica disponible.

Por su parte, la energía geotérmica de baja entalpía aprovecha las propiedades de aislación térmica de la parte más superficial de la corteza terrestre. A unos pocos de metros bajo tierra, la temperatura se mantiene estable durante el año en algunas decenas de grados Celsius. Con el propósito de aprovechar este fenómeno, se instala un circuito de cañerías bajo tierra, y se hace circular lentamente un líquido caloportador que en la superficie está a temperatura ambiente. Independientemente de cuál sea la temperatura ambiente, el líquido, al circular por las cañerías, equilibra siempre su temperatura con de la tierra. Así, si la temperatura ambiente es menor a la del interior de la cañería, entonces el líquido absorbe temperatura, mientras que, si el ambiente tiene una temperatura superior, entonces baja su temperatura.

Existe una gran variedad de formas para aprovechar la geotermia de baja entalpía, tanto para calefacción, refrigeración y agua caliente sanitaria. Una forma que ha probado ser eficiente es el uso de bombas de calor.

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA ENERGÍA GEOTÉRMICA

Los sistemas de almacenamiento de energía no producen energía por sí mismos, sino que permiten absorber energía desde una fuente en un momento determinado, y entregarla en otro momento para su consumo.

Según lo indica el Centro de Sistemas Sustentables, de la Universidad de Michigan, las tecnologías de almacenamiento están siendo desarrolladas, al menos, desde la primera mitad del siglo XIX. No hay una única forma de clasificar los sistemas de almacenamiento, sin embargo, lo más común es hacerlo a partir de la forma de energía que es almacenada. Así, es posible distinguir los sistemas de almacenamiento eléctricos, químicos, electroquímicos, mecánicos, hidráulicos y térmicos.

A la fecha, los sistemas de almacenamiento de energía se han masificado en aplicaciones donde no se requieren altos volúmenes de energía. Sin embargo, la investigación y desarrollo en esta área tomó fuerza, primero con la crisis del petróleo en EE. UU. de los años 70s y, más recientemente, a partir del impulso dado por la industria de la movilidad eléctrica.

Desde la perspectiva de las aplicaciones en la red eléctrica, que requieren grandes volúmenes de energía, los sistemas de almacenamiento más comunes son los de bombeo. Estos emulan la operación de una central hidroeléctrica, ya que utilizan energía eléctrica para bombear grandes volúmenes de agua hacia un depósito ubicado a una cierta altura, almacenando la energía en forma de energía potencial. Para extraer la energía, se deja caer el agua sobre una turbina, la cual está acoplada a un generador eléctrico.

Con los últimos desarrollos tecnológicos, el almacenamiento electroquímico en formas de baterías ha ido aumentando la cantidad de energía almacenable, al mismo tiempo que ha reducido considerablemente sus costos de inversión.

El primer sistema de almacenamiento conectado a la red eléctrica instalado en Chile está en la Subestación Eléctrica Andes, y fue puesto en servicio en 2009.

Fuente: Center for Sustainable Systems (University of Michigan)

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE DEL ALMACENAMIENTO

Actualidad

Las seis oportunidades que tienen los sistemas de almacenamiento en el sistema eléctrico

Estudio de Valgesta Energía señala la necesidad de contar con una regulación acorde a la realidad del sistema eléctrico nacional para permitir el ingreso de estas tecnologías.

Seis son las oportunidad que identificó un estudio hecho por Valgesta Energía para la participación de los sistemas de almacenamiento energético en el mercado eléctrico local, donde se plantea una propuesta regulatoria para la realidad chilena.

De acuerdo al documento el desarrollo de estas tecnologías puede ofrecer servicios como:

Arbitraje de energía

Según el estudio, el arbitraje consiste en aprovechar las diferencias del precio marginal a lo largo de un período de tiempo, precisando que se obtiene un beneficio “al cargar el sistema de almacenamiento en momentos en que el precio sea bajo (como en horas de mayor generación renovable, o en horas de menor demanda) y descargarlo en momentos en que el precio sea alto (horas peak)”.

“Sin embargo, para que la explotación de esta oportunidad sea rentable, se deben transar grandes cantidades de energía, lo cual está limitado por las capacidades máximas de almacenamiento de las tecnologías”, se añade.

Por ello, en principio esto no sería una opción viable para sistemas de baterías o volantes. Otra limitante es cómo funcione el mercado de energía. En aquellos mercados donde el despacho económico se condiga con el despacho físico, los SdA pueden ofrecer y comprar energía en los momentos en que les sea convenientes, según sus proyecciones, y así gestionar el riesgo del arbitraje. Pero en mercados centralizados, como el chileno, la operación de los SdA está sujeta a las instrucciones del operador del sistema, por lo que no pueden gestionar el riesgo y están más expuestos a tener pérdidas económicas en las transacciones por compra y venta de energía.

Capacidad

“La función de entregar capacidad en las horas punta es asumida por unidades convencionales con gran capacidad de rampa, las cuales pueden tener altos costos de operación”, plantea el informe, por lo que los sistemas de almacenamiento “pueden asumir este rol y entregar capacidad para las horas punta, cargándose en horas de baja demanda y por ende a menores precios (se vincula con el arbitraje de energía). Sin embargo, podrían verse limitados por los tiempos de operación que el operador del sistema ordene a las unidades de punta”.

Co-localización con ERNC

Valgesta señala que la generación de fuentes renovables “muchas veces se debe «verter» para así respetar las limitaciones de las líneas de restricción y los mínimos técnicos de las centrales térmicas”, razón por la cual sostiene que el uso de sistema de almacenamiento instalados junto con plantas de energías renovables, permitiría almacenar la sobre generación y entregarla en horas donde su fuente de generación no está disponible.

Además, señala que se puede distribuir su generación en el tiempo puede ayudar a mejorar el nivel de capacidad que se le reconoce a este tipo de plantas, lo que aumentaría su remuneración por este concepto.

Servicios Complementarios y Flexibilidad

El estudio afirma que la creciente penetración de fuentes de Energías Renovables Variables “trae consigo un riesgo a la seguridad del sistema, debido a la variabilidad de las inyecciones, y la disminución de la inercia sistémica, por lo que se requieren unidades que sean capaces de entregar servicios como regulación de frecuencia rápida, y que puedan operar con grandes rampas de toma de carga, para lo cual los sistemas de almacenamiento son una buena opción. Además, pueden entregar otros servicios como regulación de tensión, reserva en giro y partida en frío”.

Refuerzo de transmisión

En el documento se indica que la instalación de fuentes renovables “se da a un ritmo más rápido que la instalación de nuevas líneas de transmisión, además de que la disposición geográfica de estas fuentes depende fuertemente de la disponibilidad de los recursos con los que se genera (viento, radiación solar, agua), por lo que suelen concentrarse en aquellos lugares donde la disponibilidad es mayor. Por estos motivos, ante un aumento de fuentes de energías renovables, es esperable un aumento en los problemas de congestión en los sistemas de transmisión”.

“Los sistemas de almacenamiento pueden aliviar problemas de congestión si se localizan en puntos estratégicos, como por ejemplo cerca de grandes consumos, permitiendo postergar las inversiones necesarias para solucionar los problemas de congestión. Además, su instalación no presenta las dificultades vistas en la instalación de nuevas líneas, como la aceptación pública o los grandes requerimientos de servidumbres”, se precisa.

Propuesta

El estudio asevera que para permitir el desarrollo de estas oportunidades, se requiere “de una revisión y modificación regulatoria en aquellos mercados no integrados verticalmente, junto con la generación de señales de precio efectivas. Esto no es una tarea fácil, y ha sido abordada por varios mercados eléctricos, que se describen a continuación”.

Fuente: Revista Electricidad

X