La Agencia Internacional de la Energía define la energía solar como aquella que se puede extraer de la luz solar que llega a la tierra y ser transformada en otras formas de energía útil, como energía térmica o eléctrica.

La luz solar puede ser convertida de manera directa en energía eléctrica, a través de celdas fotovoltaicas o bien en energía calórica a través de equipamiento de concentración solar.

En los sistemas de aprovechamiento térmico, el calor recogido en los colectores solares o concentradores puede destinarse a satisfacer numerosas necesidades como, por ejemplo, obtención de agua caliente para consumo doméstico o industrial, o bien para fines de calefacción, aplicaciones agrícolas, y la producción de electricidad a través de un proceso termoeléctrico.

Por su parte, los Paneles Fotovoltaicos, que constan de un conjunto de celdas solares, se utilizan para la producción de electricidad y constituyen una adecuada solución para el abastecimiento eléctrico tanto en áreas rurales como desérticas, que cuentan con un recurso solar abundante. La electricidad obtenida mediante los sistemas fotovoltaicos puede utilizarse en forma directa, o bien ser almacenada en baterías para utilizarla durante la noche.

Fuente: Internacional Energy Agency

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA ENERGÍA SOLAR

La energía eólica es aquella energía cinética que se encuentra disponible en una masa de aire en movimiento (viento). Según la Administración de Información de la Energía de los EE.UU. esta energía ha sido utilizada por el ser humano desde, al menos, el año 5.000 A.C.

Los aerogeneradores son dispositivos diseñados para transformar la energía cinética del viento en energía eléctrica. Producto de intensas actividades de investigación y desarrollo, su diseño aerodinámico ha tenido importantes variaciones desde sus orígenes a la fecha. En la actualidad, el diseño más común consiste en una turbina de tres palas) montadas sobre una torre. La turbina está acoplada mecánicamente a un generador eléctrico. La cantidad de energía que un aerogenerador puede transformar en electricidad dependerá, además de la velocidad del viento, de la altura de la torre y del largo de sus palas.

Fuente: EIA – U.S. Energy Information Administration

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA ENERGÍA EÓLICA

La bioenergía se define como la energía contenida en la biomasa. La biomasa corresponde a cualquier materia orgánica que esté disponible de manera renovable, tales como residuos de animales, plantas, cultivos o deshechos orgánicos.

Dependiendo de la biomasa que se utilice, la bioenergía puede ser utilizada como energía térmica, a partir de la quema directa, o bien a partir de un proceso de transformación en un combustible gaseoso (biogás) o en un combustible líquido (biocombustible).

Fuente: Agencia Internacional de la Energía

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA BIOENERGÍA

La Asociación Europea de la Energía Oceánica plantea que hay, al menos, cuatro formas de extraer el contenido energético disponible en los mares: tecnología undimotriz, mareomotriz, de gradiente térmico y de gradiente de salinidad.

La tecnología undimotriz extrae energía del movimiento de las olas, de igual forma, la tecnología mareomotriz aprovecha las mareas o corrientes marinas. Por su parte, la tecnología de gradiente térmico aprovecha las diferencias de temperatura entre la superficie y las aguas profundas, y, por último, está la tecnología gradiente de salinidad.

Chile es un país que tiene más de 4.500km de costa y una tradición naval importante, por lo que se estima que la energía de los mares puede jugar un rol, tanto a nivel de provisión de energía a la red como en aplicaciones descentralizadas. Con el propósito de aprovechar estas ventajas, nuestro país ha estado preparando sus capacidades tecnológicas poniendo en marcha una serie de iniciativas público-privadas, que buscan entender mejor el tipo de recurso de recurso y su disponibilidad en el territorio, evaluar los impactos ambientales y sociales, así como también preparar el capital humano necesario para facilitar la implantación de esta tecnología cuando esta esté en condiciones de competir en el mercado.

Fuente: Ocean Energy Europe

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA ENERGÍA DE LOS MARES

La energía eléctrica producida a partir de la energía potencial contenida en un volumen de agua ubicado a una cierta altura se denomina energía hidroeléctrica. En Chile, se utilizan generalmente dos tipos de centrales, de embalse y de pasada.

Las centrales de embalse interrumpen el curso normal de un río con el propósito de controlar la acumulación o liberación del agua almacenada, lo que permite gestionar la cantidad de energía producida. Las centrales de pasada desvían momentáneamente una parte del caudal de un curso de agua, con el propósito de dejarla caer sobre una turbina que produce la electricidad. Una vez terminado el proceso, el agua es devuelta al cauce natural.

La energía hidroeléctrica es renovable y su disponibilidad depende principalmente de los ciclos hidrológicos. Es del caso señalar que la Ley General de Servicios Eléctricos, en su artículo 225, define que serán consideradas como Medios de Generación Renovables No Convencionales, aquellas centrales hidroeléctricas cuya potencia conectada sea inferior o igual a los 20 MW.

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA MINIHIDRO

La energía geotérmica de alta entalpía es aquella en forma de calor que está disponible bajo la superficie terrestre, a profundidades relativamente bajas, producto de la presencia de magma a alta temperatura.

Una forma de extraer esta energía es aprovechar yacimientos de agua o vapor subterráneo que estén cercanos a la fuente de calor.

El calor extraído en la superficie se utiliza para producir vapor a presión que alimenta a una turbina encargada de la producción de electricidad. Finalmente, en las centrales de ciclo cerrado, el agua es reinsertada al yacimiento con el propósito que absorba nuevamente la energía térmica disponible.

Por su parte, la energía geotérmica de baja entalpía aprovecha las propiedades de aislación térmica de la parte más superficial de la corteza terrestre. A unos pocos de metros bajo tierra, la temperatura se mantiene estable durante el año en algunas decenas de grados Celsius. Con el propósito de aprovechar este fenómeno, se instala un circuito de cañerías bajo tierra, y se hace circular lentamente un líquido caloportador que en la superficie está a temperatura ambiente. Independientemente de cuál sea la temperatura ambiente, el líquido, al circular por las cañerías, equilibra siempre su temperatura con de la tierra. Así, si la temperatura ambiente es menor a la del interior de la cañería, entonces el líquido absorbe temperatura, mientras que, si el ambiente tiene una temperatura superior, entonces baja su temperatura.

Existe una gran variedad de formas para aprovechar la geotermia de baja entalpía, tanto para calefacción, refrigeración y agua caliente sanitaria. Una forma que ha probado ser eficiente es el uso de bombas de calor.

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA ENERGÍA GEOTÉRMICA

Los sistemas de almacenamiento de energía no producen energía por sí mismos, sino que permiten absorber energía desde una fuente en un momento determinado, y entregarla en otro momento para su consumo.

Según lo indica el Centro de Sistemas Sustentables, de la Universidad de Michigan, las tecnologías de almacenamiento están siendo desarrolladas, al menos, desde la primera mitad del siglo XIX. No hay una única forma de clasificar los sistemas de almacenamiento, sin embargo, lo más común es hacerlo a partir de la forma de energía que es almacenada. Así, es posible distinguir los sistemas de almacenamiento eléctricos, químicos, electroquímicos, mecánicos, hidráulicos y térmicos.

A la fecha, los sistemas de almacenamiento de energía se han masificado en aplicaciones donde no se requieren altos volúmenes de energía. Sin embargo, la investigación y desarrollo en esta área tomó fuerza, primero con la crisis del petróleo en EE. UU. de los años 70s y, más recientemente, a partir del impulso dado por la industria de la movilidad eléctrica.

Desde la perspectiva de las aplicaciones en la red eléctrica, que requieren grandes volúmenes de energía, los sistemas de almacenamiento más comunes son los de bombeo. Estos emulan la operación de una central hidroeléctrica, ya que utilizan energía eléctrica para bombear grandes volúmenes de agua hacia un depósito ubicado a una cierta altura, almacenando la energía en forma de energía potencial. Para extraer la energía, se deja caer el agua sobre una turbina, la cual está acoplada a un generador eléctrico.

Con los últimos desarrollos tecnológicos, el almacenamiento electroquímico en formas de baterías ha ido aumentando la cantidad de energía almacenable, al mismo tiempo que ha reducido considerablemente sus costos de inversión.

El primer sistema de almacenamiento conectado a la red eléctrica instalado en Chile está en la Subestación Eléctrica Andes, y fue puesto en servicio en 2009.

Fuente: Center for Sustainable Systems (University of Michigan)

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE DEL ALMACENAMIENTO

Actualidad

Publicado el 18-11-2020
Estudio afirma que el cambio climático afectará generación solar en Chile

El pais tiene uno de los mayores potenciales solares del mundo, virtud que podría cambiar por el calentamiento global. Un estudio de la U. de Santiago, publicado en Nature, proyecta que alza de la nubosidad podría afectar nuestro potencial solar.

El cambio climático suele asociarse a sequía, precipitaciones y cambios de ternperatura, principalmente. Sin embargo, un estudio de la U. de Santiago, liderado por el climatólogo Raúl Cordero, y publicado en la revista científica Nature, añade una nueva y poca explorada combinación: la nubosidad y la energía solar.

La investigación proyecta que el aumento en la nubosidad que podría generar el cambio climático a mediados de siglo, alteraría la capacidad fotovoltaica instalada en Chile, especialmente en el norte del país y que a nivel nacional hoy es de 3 GW y que en 2019 generó el equivalente al 8% del consumo eléctrico nacional.

Cordero señala que la nubosidad es la mayor fuente de intermitencias no programadas en la generación de energía fotovoltaica. “El potencial solar no es constante y está cambiado debido al calentamiento global”, advierte.

Mientras que una caída en la nubosidad puede disminuir la intermitencia, un aumento en las nubes puede aumentar la variabilidad en la generación fotovoltaica, afectando a su vez la estabilidad de la red.

La generación de nubes puede producirse durante un día, un año, o incluso hacerlo abruptamente debido a las condiciones meteorológicas. A la nubosidad se suman las temperaturas y el viento, que también juegan un rol en la eficiencia de los paneles solares.

Todos estos factores, viento, temperatura, nubosidad y la abundancia de polvo en suspensión, están cambiando debido al calentamiento global. “La intermitencia de la energía fotovoltaica se deben principalmente a cambios en la frecuencia de días nublados”, dice Cordero.

La generación eléctrica disminuye durante días nublados. “El que la intermitencia aumente puede significar una menor generación durante un tiempo corto, lo que obligará a aumentar la capacidad instalada para compensar esas intermitencias y mantener el ritmo en el crecimiento de la generación eléctrica”, explica el climatólogo.

A pesar de este escenario, la generación fotovoltaica va a continuar aumentando en todo el mundo. Cordero señala que se debe a que es una de las maneras de avanzar hacia la carbono neutralidad y mitigar el cambio climático. “Este podría aumentar los costos de producción de energía debido a la necesidad de compensar la intermitencia con plantas de respaldo o almacenamiento de energía vía baterías”.

De acuerdo a cifras del sector, la generación eléctrica fotovoltaica en Chile se ha triplicado en solo cinco años. “Se ha triplicado simplemente porque bajaron los costos de los módulos foto-voltaicos drásticamente y hubo un cambio regulatorio que permitió la instalación de plantas solares de gran escala en Chile. Este aumento ocurrió en los últimos cinco años, pero los efectos del cambio climático se ven en el largo plazo, es decir en décadas”, señala Cordero.

Al cambiar los patrones de nubosidad, el cambio climático puede aumentar la variabilidad meteorológica acrecentando la intermitencia de la energía renovable.

El talón de Aquiles de las energías renovables es su intermitencia. “En algunas zonas del mundo, esa intermitencia va a aumentar debido al cambio climático. Y eso va a significar mayores costos de producción porque significa instalación de más plantas de respaldo o más baterías”, señala el académico de la Usach.

El nuevo estudio de la U. de Santiago demuestra que cambios en la frecuencia de los días nublados debido al cambio climático, provocará cambios en el número de días con condiciones poco favorables para la generación fotovoltaica.

La frecuencia de los días nublados en Chile enfrentará cambios según la ubicación. En la zona centro-sur del país por ejemplo, la nubosidad bajará, lo que es malo en términos de precipitaciones y para la sequía, pero bueno para la generación fotovoltaica. “Se espera que a 2050 esta generación solar en esta zona aumente hasta 30%”, indica Cordero.

Por el contrario, en el norte se esperan cambios llamativos en la intermitencia de la nubosidad. Hasta mediados de siglo, el debilitamiento esperado en el invierno altiplánico , probablemente provoque bajas de hasta 20% en el número de días de verano con presencia de nubosidad; alzas en similares porcentajes se esperan hasta 2050 en el número de días nublados en la zona centro – norte.

Este problema no es exclusivo de Chile, de hecho las mayores alteraciones en la intermitencia de la energía solar se esperan en Europa y Medio Oriente. Al igual que en la Península Arábiga y el noreste de Africa, donde alzas en la frecuencia de días nublados podría duplicar hasta mediados de siglo la necesidad de almacenamiento de energía y de servicios de estabilización de la red (más plantas de respaldo).

“Se espera que los cambios en la intermitencia de la energía fotovoltaica durante el verano sean más fuertes en Europa y en la Península Arábiga”, señala Cordero, ello, porque además de la nubosidad, los paneles también se ven afectados por las altas temperaturas, como las de estas zonas, que pueden llegar a los 50°C.

Fuente: La Tercera – Pulso

X