La Agencia Internacional de la Energía define la energía solar como aquella que se puede extraer de la luz solar que llega a la tierra y ser transformada en otras formas de energía útil, como energía térmica o eléctrica.

La luz solar puede ser convertida de manera directa en energía eléctrica, a través de celdas fotovoltaicas o bien en energía calórica a través de equipamiento de concentración solar.

En los sistemas de aprovechamiento térmico, el calor recogido en los colectores solares o concentradores puede destinarse a satisfacer numerosas necesidades como, por ejemplo, obtención de agua caliente para consumo doméstico o industrial, o bien para fines de calefacción, aplicaciones agrícolas, y la producción de electricidad a través de un proceso termoeléctrico.

Por su parte, los Paneles Fotovoltaicos, que constan de un conjunto de celdas solares, se utilizan para la producción de electricidad y constituyen una adecuada solución para el abastecimiento eléctrico tanto en áreas rurales como desérticas, que cuentan con un recurso solar abundante. La electricidad obtenida mediante los sistemas fotovoltaicos puede utilizarse en forma directa, o bien ser almacenada en baterías para utilizarla durante la noche.

Fuente: Internacional Energy Agency

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA ENERGÍA SOLAR

La energía eólica es aquella energía cinética que se encuentra disponible en una masa de aire en movimiento (viento). Según la Administración de Información de la Energía de los EE.UU. esta energía ha sido utilizada por el ser humano desde, al menos, el año 5.000 A.C.

Los aerogeneradores son dispositivos diseñados para transformar la energía cinética del viento en energía eléctrica. Producto de intensas actividades de investigación y desarrollo, su diseño aerodinámico ha tenido importantes variaciones desde sus orígenes a la fecha. En la actualidad, el diseño más común consiste en una turbina de tres palas) montadas sobre una torre. La turbina está acoplada mecánicamente a un generador eléctrico. La cantidad de energía que un aerogenerador puede transformar en electricidad dependerá, además de la velocidad del viento, de la altura de la torre y del largo de sus palas.

Fuente: EIA – U.S. Energy Information Administration

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA ENERGÍA EÓLICA

La bioenergía se define como la energía contenida en la biomasa. La biomasa corresponde a cualquier materia orgánica que esté disponible de manera renovable, tales como residuos de animales, plantas, cultivos o deshechos orgánicos.

Dependiendo de la biomasa que se utilice, la bioenergía puede ser utilizada como energía térmica, a partir de la quema directa, o bien a partir de un proceso de transformación en un combustible gaseoso (biogás) o en un combustible líquido (biocombustible).

Fuente: Agencia Internacional de la Energía

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA BIOENERGÍA

La Asociación Europea de la Energía Oceánica plantea que hay, al menos, cuatro formas de extraer el contenido energético disponible en los mares: tecnología undimotriz, mareomotriz, de gradiente térmico y de gradiente de salinidad.

La tecnología undimotriz extrae energía del movimiento de las olas, de igual forma, la tecnología mareomotriz aprovecha las mareas o corrientes marinas. Por su parte, la tecnología de gradiente térmico aprovecha las diferencias de temperatura entre la superficie y las aguas profundas, y, por último, está la tecnología gradiente de salinidad.

Chile es un país que tiene más de 4.500km de costa y una tradición naval importante, por lo que se estima que la energía de los mares puede jugar un rol, tanto a nivel de provisión de energía a la red como en aplicaciones descentralizadas. Con el propósito de aprovechar estas ventajas, nuestro país ha estado preparando sus capacidades tecnológicas poniendo en marcha una serie de iniciativas público-privadas, que buscan entender mejor el tipo de recurso de recurso y su disponibilidad en el territorio, evaluar los impactos ambientales y sociales, así como también preparar el capital humano necesario para facilitar la implantación de esta tecnología cuando esta esté en condiciones de competir en el mercado.

Fuente: Ocean Energy Europe

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA ENERGÍA DE LOS MARES

La energía eléctrica producida a partir de la energía potencial contenida en un volumen de agua ubicado a una cierta altura se denomina energía hidroeléctrica. En Chile, se utilizan generalmente dos tipos de centrales, de embalse y de pasada.

Las centrales de embalse interrumpen el curso normal de un río con el propósito de controlar la acumulación o liberación del agua almacenada, lo que permite gestionar la cantidad de energía producida. Las centrales de pasada desvían momentáneamente una parte del caudal de un curso de agua, con el propósito de dejarla caer sobre una turbina que produce la electricidad. Una vez terminado el proceso, el agua es devuelta al cauce natural.

La energía hidroeléctrica es renovable y su disponibilidad depende principalmente de los ciclos hidrológicos. Es del caso señalar que la Ley General de Servicios Eléctricos, en su artículo 225, define que serán consideradas como Medios de Generación Renovables No Convencionales, aquellas centrales hidroeléctricas cuya potencia conectada sea inferior o igual a los 20 MW.

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA MINIHIDRO

La energía geotérmica de alta entalpía es aquella en forma de calor que está disponible bajo la superficie terrestre, a profundidades relativamente bajas, producto de la presencia de magma a alta temperatura.

Una forma de extraer esta energía es aprovechar yacimientos de agua o vapor subterráneo que estén cercanos a la fuente de calor.

El calor extraído en la superficie se utiliza para producir vapor a presión que alimenta a una turbina encargada de la producción de electricidad. Finalmente, en las centrales de ciclo cerrado, el agua es reinsertada al yacimiento con el propósito que absorba nuevamente la energía térmica disponible.

Por su parte, la energía geotérmica de baja entalpía aprovecha las propiedades de aislación térmica de la parte más superficial de la corteza terrestre. A unos pocos de metros bajo tierra, la temperatura se mantiene estable durante el año en algunas decenas de grados Celsius. Con el propósito de aprovechar este fenómeno, se instala un circuito de cañerías bajo tierra, y se hace circular lentamente un líquido caloportador que en la superficie está a temperatura ambiente. Independientemente de cuál sea la temperatura ambiente, el líquido, al circular por las cañerías, equilibra siempre su temperatura con de la tierra. Así, si la temperatura ambiente es menor a la del interior de la cañería, entonces el líquido absorbe temperatura, mientras que, si el ambiente tiene una temperatura superior, entonces baja su temperatura.

Existe una gran variedad de formas para aprovechar la geotermia de baja entalpía, tanto para calefacción, refrigeración y agua caliente sanitaria. Una forma que ha probado ser eficiente es el uso de bombas de calor.

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA ENERGÍA GEOTÉRMICA

Los sistemas de almacenamiento de energía no producen energía por sí mismos, sino que permiten absorber energía desde una fuente en un momento determinado, y entregarla en otro momento para su consumo.

Según lo indica el Centro de Sistemas Sustentables, de la Universidad de Michigan, las tecnologías de almacenamiento están siendo desarrolladas, al menos, desde la primera mitad del siglo XIX. No hay una única forma de clasificar los sistemas de almacenamiento, sin embargo, lo más común es hacerlo a partir de la forma de energía que es almacenada. Así, es posible distinguir los sistemas de almacenamiento eléctricos, químicos, electroquímicos, mecánicos, hidráulicos y térmicos.

A la fecha, los sistemas de almacenamiento de energía se han masificado en aplicaciones donde no se requieren altos volúmenes de energía. Sin embargo, la investigación y desarrollo en esta área tomó fuerza, primero con la crisis del petróleo en EE. UU. de los años 70s y, más recientemente, a partir del impulso dado por la industria de la movilidad eléctrica.

Desde la perspectiva de las aplicaciones en la red eléctrica, que requieren grandes volúmenes de energía, los sistemas de almacenamiento más comunes son los de bombeo. Estos emulan la operación de una central hidroeléctrica, ya que utilizan energía eléctrica para bombear grandes volúmenes de agua hacia un depósito ubicado a una cierta altura, almacenando la energía en forma de energía potencial. Para extraer la energía, se deja caer el agua sobre una turbina, la cual está acoplada a un generador eléctrico.

Con los últimos desarrollos tecnológicos, el almacenamiento electroquímico en formas de baterías ha ido aumentando la cantidad de energía almacenable, al mismo tiempo que ha reducido considerablemente sus costos de inversión.

El primer sistema de almacenamiento conectado a la red eléctrica instalado en Chile está en la Subestación Eléctrica Andes, y fue puesto en servicio en 2009.

Fuente: Center for Sustainable Systems (University of Michigan)

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE DEL ALMACENAMIENTO

Actualidad

Esperanzador: Pandemia podría reimpulsar la agenda climática

Los millonarios planes de estímulo podrían impulsar proyectos contra el calentamiento global. Esto, si resisten el lobby.

El futurista centro de convenciones SEC de Glasgow, Escocia, iba a albergar la cumbre climática COP26. Ahora, es un hospital de emergencia contra el covid-19.

La discusión ambiental se ha pospuesto. El mundo está centrado en enfrentar la pandemia y en cómo contener la otra crisis que se augura: la peor recesión desde la Gran Depresión. Y ahí surge una pregunta: ¿la preocupación económica frenarán la agenda climática?

Por ahora, al menos en el mundo desarrollado, el escenario se ve esperanzador. La canciller alemana, Angela Merkel, ya pidió que no se use dinero estatal para potenciar industrias que incrementen el calentamiento global. El FMI dijo lo mismo. “Los paquetes de estímulo se tienen que usar para un cambio más rápido y profundo. Los fondos públicos deben estimular energía limpia y transporte limpio, (…) no para subsidiar combustibles fósiles’, dice Rachel Kyte, ex directora de Energía Sostenible de la ONU.

“Estamos frente a una oportunidad extraordinaria”, agrega Gonzalo Muñoz, Champion de la COP25 de Madrid, que presidió Chile. “Podemos hacer un reset de la economía para que los Objetivos de Desarrollo Sostenible estén en el centro”. Esto, porque hay tecnologías y modelos de negocios que ayudan a resolver problemas económicos y atienden compromisos medioambientales.

La pandemia, además, genera conciencia ambiental en dos ámbitos.

Primero, ha dado un respiro al mundo. Se espera que las emisiones caigan a niveles de 2010 este año, según la Agencia Internacional de Energía. También en Chile, donde ya bajó el uso de energía eléctrica en 10%, según el Instituto de Sistemas Complejos de Ingeniería y SPEC. “Quizás las personas van a demandar aire limpio y acción climática al ver lo que es posible”, dice Rob Jackson, profesor de la U. de Stanford y presidente del Global Carbon Project. Segundo, en las inversiones. Las ancladas a criterios socialmente responsables (ESG en inglés) han sido más resilientes. Según Allianz Global Investors, sus fondos ESG rindieron un 2,4% más que los índices MSCI de mercados emergentes y Euro Stock 50 en el primer trimestre.

“Un esfuerzo sin precedentes”

En Chile también existe la oportunidad de usar los planes de estímulo para potenciar la agenda climática. “Es perfectamente posible avanzar en reactivación, sin que implique un desmejoramiento de los estándares ambientales”, dice Rodrigo Benítez, ex subsecretario de Medio Ambiente. “La economía debe incluir esa variable para ser sustentable”.

Pero no será fácil. Jorge Andrés Cash, jefe del área Ambiental en Elías Abogados, cree que hay tres proyectos ambientales claves del gobierno. El primero es la reformulación del Sistema de Evaluación e Impacto Ambiental. El segundo, el que crea el Servicio de Biodiversidad y Áreas Protegidas. Este tiene amplio acuerdo político, pero podría frenarse si se interpreta como una amenaza para la reactivación económica. El primero es más resistido. “La Comisión de Medio Ambiente de la Cámara deberá votar estos dos y solo hay margen para uno. Dado que el gobierno no logró apoyos en la reforma al SEIA, no hay coyuntura que permita revivirlo”.

El otro proyecto es la Ley Marco de Cambio Climático que, según Cash, “requerirá de un esfuerzo sin precedentes” para que los actores económicos se adapten. “Sin un acuerdo político amplio, está destinado a una temprana muerte, y no será posible cumplir la descarbonización al 2040 y mucho menos la carbononeutralidad en 2050”. Con los costos para las empresas de esta pandemia y el desempleo sobre los dos dígitos que se espera, estas medidas recibirán presión política y de lobby que pueden frenarlas.

Efecto rebote

No solo en Chile será difícil avanzar. Como sucedió en crisis pasadas, lo más probable es que con la recuperación de la economía las emisiones vuelvan a niveles previos a la crisis sanitaria. Y si países como China o Estados Unidos intentan impulsar sus alicaídas economías relajando las reglas ambientales, el rebote puede ser más duro. “La postergación de la COP26 y las dudas respecto al cumplimiento del Acuerdo de París, podrían generar un efecto rebote más significativo que el de la crisis económica de 2008”, dice Cash.

“Me preocupa que los gobiernos pierdan de vista o, incluso peor, retrocedan en sus compromisos climáticos”, agrega Jackson, de Stanford. Y perder de vista el cambio climático puede ser fácil frente a la peor crisis económica del siglo.

Fuente: La Segunda

X