La Agencia Internacional de la Energía define la energía solar como aquella que se puede extraer de la luz solar que llega a la tierra y ser transformada en otras formas de energía útil, como energía térmica o eléctrica.

La luz solar puede ser convertida de manera directa en energía eléctrica, a través de celdas fotovoltaicas o bien en energía calórica a través de equipamiento de concentración solar.

En los sistemas de aprovechamiento térmico, el calor recogido en los colectores solares o concentradores puede destinarse a satisfacer numerosas necesidades como, por ejemplo, obtención de agua caliente para consumo doméstico o industrial, o bien para fines de calefacción, aplicaciones agrícolas, y la producción de electricidad a través de un proceso termoeléctrico.

Por su parte, los Paneles Fotovoltaicos, que constan de un conjunto de celdas solares, se utilizan para la producción de electricidad y constituyen una adecuada solución para el abastecimiento eléctrico tanto en áreas rurales como desérticas, que cuentan con un recurso solar abundante. La electricidad obtenida mediante los sistemas fotovoltaicos puede utilizarse en forma directa, o bien ser almacenada en baterías para utilizarla durante la noche.

Fuente: Internacional Energy Agency

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA ENERGÍA SOLAR

La energía eólica es aquella energía cinética que se encuentra disponible en una masa de aire en movimiento (viento). Según la Administración de Información de la Energía de los EE.UU. esta energía ha sido utilizada por el ser humano desde, al menos, el año 5.000 A.C.

Los aerogeneradores son dispositivos diseñados para transformar la energía cinética del viento en energía eléctrica. Producto de intensas actividades de investigación y desarrollo, su diseño aerodinámico ha tenido importantes variaciones desde sus orígenes a la fecha. En la actualidad, el diseño más común consiste en una turbina de tres palas) montadas sobre una torre. La turbina está acoplada mecánicamente a un generador eléctrico. La cantidad de energía que un aerogenerador puede transformar en electricidad dependerá, además de la velocidad del viento, de la altura de la torre y del largo de sus palas.

Fuente: EIA – U.S. Energy Information Administration

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA ENERGÍA EÓLICA

La bioenergía se define como la energía contenida en la biomasa. La biomasa corresponde a cualquier materia orgánica que esté disponible de manera renovable, tales como residuos de animales, plantas, cultivos o deshechos orgánicos.

Dependiendo de la biomasa que se utilice, la bioenergía puede ser utilizada como energía térmica, a partir de la quema directa, o bien a partir de un proceso de transformación en un combustible gaseoso (biogás) o en un combustible líquido (biocombustible).

Fuente: Agencia Internacional de la Energía

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA BIOENERGÍA

La Asociación Europea de la Energía Oceánica plantea que hay, al menos, cuatro formas de extraer el contenido energético disponible en los mares: tecnología undimotriz, mareomotriz, de gradiente térmico y de gradiente de salinidad.

La tecnología undimotriz extrae energía del movimiento de las olas, de igual forma, la tecnología mareomotriz aprovecha las mareas o corrientes marinas. Por su parte, la tecnología de gradiente térmico aprovecha las diferencias de temperatura entre la superficie y las aguas profundas, y, por último, está la tecnología gradiente de salinidad.

Chile es un país que tiene más de 4.500km de costa y una tradición naval importante, por lo que se estima que la energía de los mares puede jugar un rol, tanto a nivel de provisión de energía a la red como en aplicaciones descentralizadas. Con el propósito de aprovechar estas ventajas, nuestro país ha estado preparando sus capacidades tecnológicas poniendo en marcha una serie de iniciativas público-privadas, que buscan entender mejor el tipo de recurso de recurso y su disponibilidad en el territorio, evaluar los impactos ambientales y sociales, así como también preparar el capital humano necesario para facilitar la implantación de esta tecnología cuando esta esté en condiciones de competir en el mercado.

Fuente: Ocean Energy Europe

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA ENERGÍA DE LOS MARES

La energía eléctrica producida a partir de la energía potencial contenida en un volumen de agua ubicado a una cierta altura se denomina energía hidroeléctrica. En Chile, se utilizan generalmente dos tipos de centrales, de embalse y de pasada.

Las centrales de embalse interrumpen el curso normal de un río con el propósito de controlar la acumulación o liberación del agua almacenada, lo que permite gestionar la cantidad de energía producida. Las centrales de pasada desvían momentáneamente una parte del caudal de un curso de agua, con el propósito de dejarla caer sobre una turbina que produce la electricidad. Una vez terminado el proceso, el agua es devuelta al cauce natural.

La energía hidroeléctrica es renovable y su disponibilidad depende principalmente de los ciclos hidrológicos. Es del caso señalar que la Ley General de Servicios Eléctricos, en su artículo 225, define que serán consideradas como Medios de Generación Renovables No Convencionales, aquellas centrales hidroeléctricas cuya potencia conectada sea inferior o igual a los 20 MW.

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA MINIHIDRO

La energía geotérmica de alta entalpía es aquella en forma de calor que está disponible bajo la superficie terrestre, a profundidades relativamente bajas, producto de la presencia de magma a alta temperatura.

Una forma de extraer esta energía es aprovechar yacimientos de agua o vapor subterráneo que estén cercanos a la fuente de calor.

El calor extraído en la superficie se utiliza para producir vapor a presión que alimenta a una turbina encargada de la producción de electricidad. Finalmente, en las centrales de ciclo cerrado, el agua es reinsertada al yacimiento con el propósito que absorba nuevamente la energía térmica disponible.

Por su parte, la energía geotérmica de baja entalpía aprovecha las propiedades de aislación térmica de la parte más superficial de la corteza terrestre. A unos pocos de metros bajo tierra, la temperatura se mantiene estable durante el año en algunas decenas de grados Celsius. Con el propósito de aprovechar este fenómeno, se instala un circuito de cañerías bajo tierra, y se hace circular lentamente un líquido caloportador que en la superficie está a temperatura ambiente. Independientemente de cuál sea la temperatura ambiente, el líquido, al circular por las cañerías, equilibra siempre su temperatura con de la tierra. Así, si la temperatura ambiente es menor a la del interior de la cañería, entonces el líquido absorbe temperatura, mientras que, si el ambiente tiene una temperatura superior, entonces baja su temperatura.

Existe una gran variedad de formas para aprovechar la geotermia de baja entalpía, tanto para calefacción, refrigeración y agua caliente sanitaria. Una forma que ha probado ser eficiente es el uso de bombas de calor.

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE LA ENERGÍA GEOTÉRMICA

Los sistemas de almacenamiento de energía no producen energía por sí mismos, sino que permiten absorber energía desde una fuente en un momento determinado, y entregarla en otro momento para su consumo.

Según lo indica el Centro de Sistemas Sustentables, de la Universidad de Michigan, las tecnologías de almacenamiento están siendo desarrolladas, al menos, desde la primera mitad del siglo XIX. No hay una única forma de clasificar los sistemas de almacenamiento, sin embargo, lo más común es hacerlo a partir de la forma de energía que es almacenada. Así, es posible distinguir los sistemas de almacenamiento eléctricos, químicos, electroquímicos, mecánicos, hidráulicos y térmicos.

A la fecha, los sistemas de almacenamiento de energía se han masificado en aplicaciones donde no se requieren altos volúmenes de energía. Sin embargo, la investigación y desarrollo en esta área tomó fuerza, primero con la crisis del petróleo en EE. UU. de los años 70s y, más recientemente, a partir del impulso dado por la industria de la movilidad eléctrica.

Desde la perspectiva de las aplicaciones en la red eléctrica, que requieren grandes volúmenes de energía, los sistemas de almacenamiento más comunes son los de bombeo. Estos emulan la operación de una central hidroeléctrica, ya que utilizan energía eléctrica para bombear grandes volúmenes de agua hacia un depósito ubicado a una cierta altura, almacenando la energía en forma de energía potencial. Para extraer la energía, se deja caer el agua sobre una turbina, la cual está acoplada a un generador eléctrico.

Con los últimos desarrollos tecnológicos, el almacenamiento electroquímico en formas de baterías ha ido aumentando la cantidad de energía almacenable, al mismo tiempo que ha reducido considerablemente sus costos de inversión.

El primer sistema de almacenamiento conectado a la red eléctrica instalado en Chile está en la Subestación Eléctrica Andes, y fue puesto en servicio en 2009.

Fuente: Center for Sustainable Systems (University of Michigan)

REVISA ESTADÍSTICAS PARA CONOCER ESTADO DE DEL ALMACENAMIENTO

Actualidad

Publicado el 03-06-2020
A 1 año del Plan de Descarbonización, ¿cómo influye la crisis económica por Covid-19?

Según los especialistas, la menor demanda por energía durante la pandemia puede enfatizar la irrelevancia de la energía fósil a favor de las renovables. Por su parte, desde el Ministerio de Energía anuncian la posibilidad de adelantar más cierres de centrales a carbón.

Mañana se cumple un año desde que el gobierno anunciara el denominado Plan de Descarbonización, una de las apuestas más fuertes con respecto a lograr las metas de reducción de Gases de Efecto Invernadero (GEI) dentro de lo que se conoce como las NDC o “Contribución Nacional” en la lucha contra el cambio climático. En concreto, el plan consiste en el cierre de 28 centrales a carbón de aquí al 2040, con una primera etapa al 2024, donde terminarían sus operaciones las 8 termoeléctricas más antiguas del país. Sin embargo, se ha logrado adelantar la salida de seis de ellas: tres estaban en la fase 1 del plan y se cerrarán antes, pero dentro de la misma fase. Y las otras tres, corresponden a la segunda fase. Esto implica que al 2024 se habrá retirado el 30% de la generación con carbón (ver tabla).

Chile ha comprometido en el marco de su NDC, reducir sus emisiones en 30% por unidad de PIB al año 2030, con respecto a 2007. Y el sector energético resulta fundamental, ya que el 78% de las emisiones totales de GEI provienen de dicha industria.

Pero, ¿cómo afecta la crisis económica producto del Covid-19 la hoja de ruta de esta iniciativa?

Al menos para el gobierno, el panorama no cambia las cosas: “En los próximos meses seguiremos trabajando en posibles cierres anticipados. En la medida que el desarrollo de las energías renovables sigue adelante con fuerza, podremos tener novedades en este frente”, comenta el ministro de Energía, Juan Carlos Jobet. Incluso, dice que la transición energética (reemplazo del carbón por energías renovables), entre otros factores, va a abrir oportunidades de inversión para una recuperación económica verde.

Desde la consultora Breves de Energía (BdE), Cristián Muñoz, su director, estima que las centrales que serán retiradas tienen un nivel de emisiones modesto, debido a su antigüedad: “De hecho, en los próximos 12 meses se espera que su generación sea menor al 7% del total de la generación a carbón del país”, explica. Pero cree que la crisis del coronavirus tiene un aspecto positivo: “El menor consumo de electricidad (cerca del 10%) marcará aún más la irrelevancia en el suministro, del sistema de las centrales a carbón que forman parte del plan de retiro”, sostiene.

Cabe recordar que el parque de centrales termoeléctricas a carbón aporta el 40% del total de la generación eléctrica.

Ricardo Bosshard, director de WWF Chile, señala que el Plan de Descarbonización ha sido un “hito valorable” y en referencia al Covid-19, dice que si bien aún no es posible analizar en profundidad todos sus efectos, “podría inferirse que la ralentización de la economía efectivamente incide en una menor demanda de energía , lo que puede reflejarse en una menor capacidad de generación, con lo que, toda la nueva generación en renovables irá a suplir la capacidad de energías fósiles. Sin embargo, no se debe perder de vista que las emisiones son el 50% de la razón del Índice Planeta Vivo. La otra mitad del desafío es la pérdida de biodiversidad y la naturaleza”.

En otro aspecto, puntualiza Bosshard, “la deseada mayor celeridad en el cierre de termoeléctricas no puede perder de vista la necesidad de que existan planes de salida consensuados con las comunidades locales”.

Al respecto, Juan Carlos Jobet comenta que están en un proceso denominado como “transición justa”. “Esto significa trabajar con las empresas para ofrecer a los trabajadores de esas centrales nuevas oportunidades laborales y generar espacios de diálogo que permitan definir con la comunidad el destino que tendrán los sitios donde están ubicadas esas centrales” , concluye el ministro de Energía.

Fuente: La Tercera – Pulso

X